New epitaxy paradigm: Remote epitaxy for 2D material-based layer transfer

Time 2018-11-09 11:30~12:05 Place Rm.600B
Code No. ME-O09 Session Chair
Name Prof. Jeehwan Kim
Affiliation Massachusetts Institute of Technology
Title New epitaxy paradigm: Remote epitaxy for 2D material-based layer transfer
Contents
In this talk, I will discuss our recent development in a “2D material-based layer-transfer (2DLT)” process based on remote epitaxy. We recently discovered that the epitaxial registry of adatoms during epitaxy can be assigned by the underlying substrate remotely through 2D materials. Our study shows that remote epitaxy can be performed through a single-atom-thick gap defined by monolayer graphene at the substrate-epilayer interface. We demonstrated successful remote homoepitaxy of (001) GaAs on (001) GaAs substrates through monolayer graphene. The concept is extended for remote epitaxy of other materials such as GaN, InP, GaP, and SrTiO3. The grown single-crystalline films are then rapidly released from the vdW surface of graphene. This concept suggests a method to copy/paste any type of single-crystalline films from the underlying substrates through 2D materials then rapidly released and transferred to the substrates of interest. With the potential to reuse graphene-coated substrates, 2DLT could advance non-Si electronics/photonics by allowing savings on the high cost of non-Si substrates.